
Transactions of the ASABE

Vol. 52(5): 1535-1544 � 2009 American Society of Agricultural and Biological Engineers ISSN 0001-2351 1535

 

WATERSHED‐SCALE CROP TYPE CLASSIFICATION

USING SEASONAL TRENDS IN REMOTE

SENSING‐DERIVED VEGETATION INDICES

G. S. Jang,  K. A. Sudduth,  E. J. Sadler,  R. N. Lerch

ABSTRACT. Analysis and simulation of watershed‐scale processes requires spatial characterization of land use, including
differentiation among crop types. If this crop type information could be obtained accurately from remote sensing data, the
effort required would be significantly reduced, especially for large watersheds. The objective of this study was to compare
two methods using multiple satellite remote sensing datasets to differentiate land cover, including crop type, for the Salt
River/Mark Twain Lake basin in northeast Missouri. Method 1 involved unsupervised classification of Landsat visible and
near‐infrared satellite images obtained at multiple dates in the growing season, followed by traditional, manual class
identification.  Method 2, developed in this research, employed the same unsupervised classification but also used normalized
difference vegetation index (NDVI) maps obtained on a 16‐day cycle from MODIS satellite images as ancillary data to derive
seasonal NDVI trends for each class in the classification map. Tree analysis was applied to the NDVI trend data to group
similar classes into clusters, and crop type for each cluster was determined from ground‐truth data. Additional ground‐truth
data were used to assess the accuracy of the procedure, and crop acreage estimates were compared to county‐level statistics.
The overall classification accuracy of Method 2 was 3% higher than that of Method 1. Method 2 was also more efficient in
terms of analyst time and ground‐truth data requirements. Therefore, this method, employing variations in seasonal NDVI
trends, is suggested for differentiation of crop type. The 30‐m resolution crop type maps developed using this process will be
useful as input data to environmental analysis models.

Keywords. Crop classification, Landsat, MODIS, NDVI, Watershed management.

nowing the spatial distribution of land cover or
land use is important both for understanding the
effects of the land cover on the environment and
for developing management strategies that can

minimize negative environmental impacts. Land use is an
important input to the watershed‐scale water quality models,
such as SWAT (Arnold et al., 1998), that are widely used to
assess the effects of conservation measures. The resolution of
land use data employed in the SWAT model has typically
ranged from 30 m (Bosch et al., 2004) to 250 m (Srinivasan
et al., 1998). In the U.S., the National Land‐Cover Database
(NLCD; Homer et al., 2004) provides this type of informa‐
tion. However, the NLCD does not provide sufficient detail
for studying resource issues in agricultural areas because it
does not differentiate among crops. Such differentiation is
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important when assessing the impact of crop management on
the environment because different fertilizers and pesticides
are applied to different crops. One product that does map dif‐
ferent crops is the Cropland Data Layer (CDL) produced
annually by the USDA National Agricultural Statistical Ser‐
vice (NASS) (Craig, 2001). However, these maps cover only
selected portions of the U.S. Because the methodology used
to develop the CDL relies on detailed NASS annual sampling
data, which are not generally available outside of the agency,
alternative approaches are needed to develop crop type maps
for other years and/or locations.

For differentiating among crops, examination of differ‐
ences in their seasonal growth trends may be useful. Because
remote sensing‐derived vegetation indices are sensitive to
crop type, planting date, crop growth stage, and harvest date,
such indices may aid in crop identification. However, images
must be obtained at the correct point in the growing season
because, at early growth stages, soil background effects will
dominate the spectral reflectance. Remote sensing crop iden‐
tification studies conducted in the late 1970s established that
multitemporal  satellite data were needed, particularly when
both spring (e.g., winter wheat) and summer (e.g., corn, soy‐
bean) crops were involved (Bauer, 1985). Multitemporal data
can also be important for summer crops; Craig (2001) re‐
ported that the optimum time to accurately separate corn
from soybeans in the U.S. Corn Belt was about mid‐August,
but this optimum time varied among crops and locations. A
majority of recent satellite‐based crop classification projects
have relied on multitemporal images (Craig, 2001; Cohen
and Shoshany, 2002; Van Niel and McVicar, 2004).
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Several methods for developing crop classifications from
remote sensing images have been applied and evaluated. A
common approach is to categorize all pixels in an image into
themes (i.e., crop type) using either supervised classification
(SC) or unsupervised classification (USC). Normally, multi‐
spectral data are used to perform the classification, and the
spectral pattern for each pixel is used as the numerical basis
for categorization (Lillesand et al., 2004). SC requires a ro‐
bust training set where land cover is known as a precursor to
the classification process (Schowengerdt, 1997). Robustness
in the training set requires that these data be chosen to span
whatever variation may be expected within the area of analy‐
sis. For example, if the classes are different crops, and plant‐
ing dates of those crops vary spatially over a region, then the
training data for SC should be chosen to be representative of
the entire region. USC, often referred to as clustering, is a bet‐
ter alternative when the training set is limited because USC
can define many classes based on natural groupings that are
inherent in the data (ERDAS, 1999).

Traditionally, thematic classification of an image involves
several steps, including feature extraction, training, and la‐
beling (Schowengerdt, 1997). After the image is clustered in
the USC process, the analyst must then supervise the labeling
using ground‐truth data that has been directly or indirectly
surveyed in the study area. Selection of homogeneous train‐
ing areas is an important consideration in classification accu‐
racy. If the training areas for a specific land cover type are not
homogeneous, then the training classes are not spectrally sep‐
arable, and training area accuracies should not be used as an
indication of overall accuracy (Lillesand et al., 2004).

Landsat TM and ETM+ data have been widely used for
monitoring natural resources. This practice has continued
even after the availability of IKONOS and QuickBird satel‐
lite data with better spatial resolution, because spectral and
radiometric properties have been found to be more important
than spatial resolution for accurate land use/cover classifica‐
tion (Toll, 1985). However, because Landsat scenes are only
available every 16 days, it is difficult to obtain multiple
cloud‐free Landsat images at appropriate times during the
growing season for crop classification. Although Landsat has
good spatial resolution (30 m), this difficulty with capturing
seasonal trends is a limitation to the use of Landsat data for
crop classification.

For ground‐truth data, both field‐surveyed data and high‐
resolution image data have been used. For example, Bellow
and Ozga (1991) used data from the national USDA‐NASS
June Agricultural Survey (JAS) to identify pixels in a classifi‐
cation image corresponding in location to the JAS fields. The
JAS is also a major source of ground‐truth data for the NASS
CDL (Craig, 2001). Wickham et al. (2004) used National Ae‐
rial Photography Program (NAPP) photos, digital orthophoto
quarter‐quadrangle (DOQQ) images, and high‐resolution ae‐
rial photographic sources to obtain reference land cover la‐
bels for western U.S. land cover data. Van Niel and McVicar
(2004) combined aerial photography and landowner surveys
to develop a ground‐truth dataset.

Meanwhile, global monitoring systems with a high tem‐
poral resolution, such as the Moderate Resolution Imaging
Spectroradiometer  (MODIS), can be a good source of auxil‐
iary data for identifying crop type and other land cover. Be‐
cause MODIS has a 2‐day temporal resolution, it is possible
to develop a cloud‐free vegetation index (VI) image with
minimal atmospheric and sun‐surface‐sensor angle effects on

a 16‐day cycle (Holben, 1986). Heute et al. (1999) stated that
time series analysis of the MODIS VIs would provide consis‐
tent spatial and temporal comparisons of global vegetation
conditions to monitor the earth's terrestrial photosynthetic
vegetation activity. Lobdell and Asner (2004) used growing‐
season MODIS data for crop discrimination. In this study,
MODIS data were able to capture only half of the variability
expressed in Landsat data at the field scale, emphasizing the
importance of incorporating the higher‐resolution Landsat
data for field‐scale observation. Doraiswamy et al. (2006)
evaluated 250‐m resolution MODIS NDVI (normalized dif‐
ference vegetation index) time‐series data for assessing soy‐
bean crop area in Brazil, and determined that regional crop
classification was possible if the MODIS data were first
screened for data anomalies. For a crop classification project
in Michigan, Brooks et al. (2006) used MODIS imagery to
obtain characteristic phenological growth profiles for the
major crop types, and then used Landsat data to verify the
MODIS phenology results with a higher spatial resolution.
Chang et al. (2007) used MODIS data, coupled with regres‐
sion tree and statistical analysis, to estimate U.S. corn and
soybean areas. They obtained good results compared to state‐
level NASS data, but with more error compared to county‐
level NASS data. Wardlow and Egbert (2008) used MODIS
NDVI time‐series data and a decision tree classifier to create
crop type maps for the state of Kansas, with an overall accura‐
cy of 84% for discriminating among summer crops. Howev‐
er, they noted a reduction in accuracy for some portions of the
state where cropped areas were not well‐represented by the
250‐m MODIS resolution.

The overall goal of this research was to create crop type
maps for the Salt River basin in northeast Missouri to provide
input data for a watershed‐scale water quality modeling proj‐
ect. The initial objective, reported here, was to evaluate and
compare two different crop type classification methods using
data from the 2003 crop year. The first, more traditional,
method used unsupervised classification of multiple Landsat
images, followed by manual class identification using
ground survey data. The second method, developed in this re‐
search, used the same Landsat‐based classification followed
by class identification using MODIS‐derived seasonal NDVI
trends.

MATERIALS AND METHODS
STUDY AREA

The study area was the Salt River/Mark Twain Lake basin
in northeast Missouri (fig. 1), which encompasses an area of
6,520 km2 within portions of 12 northeastern Missouri coun‐
ties. The basin includes all of two 8‐digit USGS hydrologic
unit codes (HUC 07110005 and HUC 07110006) and a por‐
tion of HUC 07110007. Additional details can be found in
Lerch et al. (2008). Within the basin, land use is predominate‐
ly agricultural. Cropland accounts for 44% of the area (Lerch
et al., 2008), with the primary crops being soybean, corn,
wheat, and grain sorghum. In 2003, the relative coverage area
of each of these four crops was 60%, 28%, 8%, and 4%, re‐
spectively (USDA‐NASS, 2003). Additionally, 33% of the
basin is in grassland (Lerch et al., 2008), both for hay and pas‐
ture to support beef cattle production and as Conservation
Reserve Program (CRP) set‐aside acreage.
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Figure 1. Landsat image (26 May 2003) overlaid with Salt River sub‐basin and county boundaries, along with names of counties from which ground‐
truth data were obtained. Inset shows location of Salt River basin in northeast Missouri.

Mark Twain Lake serves as the public drinking water sup‐
ply for approximately 42,000 people, and the Salt River ba‐
sin, which supplies water to the lake, has a well‐documented
history of herbicide and sediment contamination problems
(Lerch and Blanchard, 2003; USDA‐NRCS, 2000). The clay‐
pan soils that predominate within the basin create a natural
barrier to percolation, promoting surface runoff. This results
in a high degree of vulnerability to surface transport of sedi‐
ment, herbicides, and nutrients. Because of the documented
soil and water quality problems, the Salt River basin was se‐
lected as one of 12 USDA Agricultural Research Service
(ARS) benchmark watersheds for the Conservation Effects
Assessment Program (CEAP) (Lerch et al., 2008). A key
component of CEAP is the use of process‐based models to
evaluate the effect of agricultural management practices on
water quality. Thus, knowledge of the spatial distribution
across the watershed of various management practices, in‐
cluding crop type, was needed.

SATELLITE AND GROUND‐TRUTH DATA

Landsat Images
Nearly cloud‐free Landsat 7 images covering the Salt Riv‐

er/Mark Twain basin were obtained for five dates in the 2003
growing season: 26 May, 5 July, 22 August, 7 September, and
23 September (fig. 1). For complete coverage of the study
area, it was necessary to combine Landsat scenes from
row�32 and row 33 of path 25. For this research, the following
30‐m resolution ETM+ bands were used: 0.45 to 0.52 �m
(blue, band 1), 0.53 to 0.61 �m (green, band 2), 0.63 to
0.69��m (red, band 3), 0.75 to 0.90 �m (near‐infrared, NIR,
band 4), 1.55 to 1.75 �m (short wavelength infrared, SWIR,

band 5), and 2.10 to 2.35 �m (SWIR, band 7). The images
were Level 1 geometrically corrected (L1G), meaning that
they were systematically geo‐rectified with a specific output
map projection, image orientation, pixel grid‐cell size, and
resampling kernel. These five images were then combined to
make a 30‐band composite image (fig. 1). Coordinates of the
combined Landsat image were adjusted to match the mo‐
saicked USGS DOQQ image for the study area obtained from
the Center for Agricultural, Resource, and Environmental
Systems (CARES) at the University of Missouri. The
1:24,000 scale DOQQ provided a common base map for
aligning all spatial datasets used in this study.

We did not apply atmospheric correction to the Landsat 7
images. Because the two scenes combined within each mea‐
surement date were sequential (i.e., subsequent rows in the
same path), all data were obtained within 50 s and any effects
of changing sun angle over that time were minimal. Visual
examination of the images showed the atmospheric condi‐
tions to be homogeneous over the area of interest. Liang et al.
(2002) stated that classification could be done without atmo‐
spheric correction under these conditions. Furthermore, our
approach to combining multiple images into a single dataset
was the same as that followed by Song et al. (2001), who
stated that “atmospheric correction is unnecessary for change
detection based on classification of multidate composite im‐
agery in which multiple dates of remotely sensed images are
rectified and placed in a single dataset, and then classified as
if it were a single date image” (p. 232). Thus, we judged it un‐
necessary to atmospherically correct the images used in this
study.
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16‐Day NDVI Images from MODIS
Twenty‐three 16‐day, 250‐m NDVI products based on

MODIS images, one from each subsequent 16‐day period in
2003, were obtained from the Land Processes Distributed Ac‐
tive Archive Center maintained by the U.S. Geological Sur‐
vey at http://lpdaac.usgs.gov/lpdaac/get_data. The MODIS
NDVI product was calculated using the red (0.6 to 0.7 �m)
and NIR (0.7 to 1.1 �m) wavelengths using the constraint
view angle maximum value composite (CV‐MVC) procedure
(Heute et al., 1999). The 23 individual 16‐day NDVI images
were combined into a single composite image in ERDAS
Imagine 8.7 (Leica Geosystems Geospatial Imaging, Nor‐
cross, Ga.). This one‐year NDVI composite image was used
to reflect seasonal trends in vegetation as a reference for crop
type identification in the second classification method.

Ground‐Truth Data
Accuracy assessment requires the availability of ground

reference data, which are sometimes difficult and expensive
to collect. It is an accepted practice that interpretations from
large‐scale aerial photographs can be used as surrogate refer‐
ence data. In this study, 2‐m color infrared aerial photographs
of Missouri, imaged in 2003, were used as ground‐truth data
to identify forest, water, roads, bare soil, and built‐up areas
to be excluded from the crop type classification. These imag‐
es were the same DOQQ described above.

Ground‐truth data for 2003 crop type were obtained from
the USDA Farm Service Agency (FSA) for the following
counties in Missouri: Macon, Monroe, Randolph, Ralls, and
Shelby. These five counties included 66% of the land area of
the Salt River basin. The FSA data were joined to the USDA
Common Land Unit (CLU) database to provide georefer‐
enced field polygons with crop type as an attribute. The crop‐
type attributed CLU polygons were spatially adjusted to
match coordinates of the CARES DOQQ images used as a
base map. Ralls County data were used in the class identifica‐
tion process, while data from all counties were used for accu‐
racy assessment.

IMAGE CLASSIFICATION
The overall process of crop type differentiation included

image classification and then class identification. The image
classification step was identical for both methods, while the
class identification step differed between methods. A process
diagram describing the two methods is shown in figure 2.

The ISODATA method of USC was used to extract spec‐
trally distinct classes from the combined Landsat image. The
ISODATA algorithm is a more sophisticated variant of the
general k‐means algorithm and allows clusters to be merged
and split during the iteration process (Tou and Gonzalez,
1974). In this study, 0.995 was used for a convergence thresh‐
old, meaning that classification was complete when the class
values of 99.5% of image pixels were unchanged between
subsequent iterations. To minimize the potential for a single
ISODATA class to contain more than one crop type or land
cover, a total of 150 classes were defined.

Although most recent land cover or crop type identifica‐
tion projects have used SC, some have also used USC (Cohen
and Shoshany, 2002; Duda and Canty, 2002). In this research,
we chose the USC approach because we needed to create his‐
torical crop type maps for watersheds where training data
were limited and were available in only one portion of the wa‐
tershed (the 2003 dataset available for this evaluation was a
special case where data were available over most of the wa‐
tershed area). We judged USC to be the better choice in this
case because we were concerned that SC would not perform
adequately with these limited, and potentially not completely
representative,  training data.

CLASS IDENTIFICATION
Method 1: Manual Class Identification Using FSA Crop
Type Data

The 150 clusters in the USC image were grouped and la‐
beled to crop type using FSA data from Ralls County for ref-
erence data. The clusters were visually checked to define the
specific crop type in ERDAS Imagine 8.7 using the raster at-

MODIS NDVI
(23 images in 2003)

Landsat images
(5 images in 2003)

DOQQ images FSA crop type data
for 2003

Reference data
for georeferencing

Ground truth data
for classification

Satellite images

Georeference satellite images Spatial adjustment

Image combination
of 23 MODIS NDVI

images and USC

Unsupervised
classification
(150 classes)

Mean NDVI trend
Calculated for

each class in USC

Cluster tree developed to
visualize maximum distance

between clusters in USC

Crop type map referencing
MODIS-derived NDVI

Trend (Method 2)
Accuracy assessment

Comparison of crop type
maps using only FSA data (Method 1)
and MODIS NDVI trends (Method 2)

Crop type map
(Method 1)

Manual regrouping
of 150 classes into 4

crop types

MODIS NDVI
(23 images in 2003)

Landsat images
(5 images in 2003)

DOQQ images FSA crop type data
for 2003

Reference data
for georeferencing

Ground truth data
for classification

Satellite images

Spatial adjustment

Image combination
of 23 MODIS NDVI

images and USC

Unsupervised
classification
(150 classes)

Mean NDVI trend
Calculated for

each class in USC

Cluster tree developed to
visualize maximum distance

between clusters in USC

Crop type map referencing
MODIS-derived NDVI

Trend (Method 2)
Accuracy assessment

Comparison of crop type
maps using only FSA data (Method 1)
and MODIS NDVI trends (Method 2)

Crop type map
(Method 1)

Manual regrouping
of 150 classes into 4

crop types

Figure 2. Overall process of image classification and class identification using manual identification (Method 1) and MODIS‐derived NDVI data (Meth‐
od 2).



1539Vol. 52(5): 1535-1544

tribute editor window. Clusters that corresponded to a single
crop type in the FSA data were retained and labeled. The
dominant crop type was determined for those non‐
homogeneous clusters containing two or more crops in the
FSA data, and those clusters were labeled as the dominant
crop type. The clusters that represented other land cover
(e.g.,�forest, water, road, and built‐up area) were clipped
from the image. Finally, the clusters identified to crops were
regrouped into classes representing the specific crops using
the “recode” module in ERDAS Imagine.

Method 2: Class Identification from MODIS‐Derived
NDVI Trends

Method 2 also began with the 150 USC clusters derived
from the Landsat images. MODIS‐derived NDVI data were
then used in a cluster tree analysis to group the 150 clusters
according to crop type. The 250‐m resolution MODIS images
were first resampled to the 30‐m resolution of the Landsat‐
derived USC image. Then, the pixels in the stack of MODIS
NDVI images corresponding to each of the 150 USC clusters
were extracted and a mean NDVI was determined for each of
the 23 MODIS images in ERDAS Imagine. These mean
NDVI data, consisting of a 23‐date trend for each of the
150�Landsat‐derived  USC clusters, were output for subse‐
quent analysis in SAS (version 8.2, SAS Institute, Inc., Cary,
N.C.).

Ward's method (Ward, 1963) implemented in the CLUS‐
TER procedure in SAS, was used to group the 150 USC
classes based on the degree of similarity in their mean
MODIS‐derived NDVI trends. Ward's method is an agglom‐
erative hierarchical clustering procedure that successively
merges “nearest” clusters, where distance is based on a
between‐cluster  sum of squares. A dendrogram, or tree dia‐
gram, was constructed with the TREE procedure in SAS to
show the hierarchy of the clustering output, with those clus‐
ters with more similarity being more closely grouped at the
base of the dendrogram. The ground‐truth data correspond‐
ing to the branches of the dendrogram were used to identify
which portions of the cluster tree represented specific crops
plus an “other” land cover classification.

ACCURACY ASSESSMENT

For accuracy assessment, Congalton (1991) suggested the
rule of thumb that a minimum of 50 samples should be ob‐
tained in each land use/cover category to produce an error
matrix. According to Van Genderen and Lock (1977), this im‐
plies a 95% interpretation accuracy level. In this study, the
sampling unit used was the pixel, and over 1300 pixels were
selected for accuracy assessment of the crop type map. Be‐
cause there were relatively fewer fields of some crops,
(e.g.,�wheat),  the number of assessment samples for each
crop varied.

The relationships between image classification and actual
land cover were expressed using classification error matrices
(Lillesand et al., 2004). This approach allowed easy visual‐
ization of errors of omission (i.e., pixels classified to another
crop type) and errors of commission (i.e., extra pixels classi‐
fied as a given crop type). It also quantified user's accuracy
(i.e., the probability that a pixel classified as a given crop ac‐
tually represented that crop on the ground) and producer's ac‐
curacy (i.e., the probability that pixels in the training set were
classified correctly).

A separate error matrix was prepared for Ralls County data
to document the accuracy of the classification processes in the
same geographic area from which the ground‐truth data used in
the classification were obtained. Data from the other four coun‐
ties were pooled in a common error matrix to provide an accura‐
cy assessment for a portion of the basin that was independent of
the ground‐truth data used in the classification. Additionally, re‐
sults from both methods were compared to county‐level crop
statistics (USDA‐NASS, 2003).

RESULTS AND DISCUSSION
METHOD 1: MANUAL CLASS IDENTIFICATION USING FSA
CROP TYPE DATA

Applying the manual class identification method, coupled
with Ralls County ground‐truth crop type data, to the
ISODATA‐classified image of the study area (fig. 3), it was
possible to identify four crops: soybean, corn, grass (includ‐
ing CRP), and wheat (fig. 4). Unfortunately, it was not pos‐
sible to reliably identify a categorization for grain sorghum
because its temporal reflectance characteristics were similar
to those of soybean (Wardlow et al., 2007) and because there
were few sorghum fields in the Ralls County ground‐truth da‐
taset. These factors resulted in grain sorghum pixels being
contained in classes where a majority of the class members
were other crops, primarily soybean. We expected the effect
on classification accuracy of other crops to be small, as grain
sorghum was planted on only 4% of the cropped area, which
was less than 6% of the area planted to soybean (USDA‐
NASS, 2003).

Accuracy assessment for Method 1 was based on 155 and
1266 randomly selected pixels from the crop fields in Ralls
and the other four counties, respectively. The crop type de‐
fined in the Method 1 classification was compared to the crop
type for that pixel from the FSA crop data. Ralls County, in
the eastern part of the Salt River basin, was the same area
from which the ground‐truth data for class identification was
taken, while data from the other four counties provided an in‐
dependent accuracy assessment. Over both datasets, the ac‐
curacy of Method 1 was 83.0% and the kappa coefficient,
which expresses the reduction in error generated by a classifi‐
cation process compared to the error of a completely random
classification, was 0.76. In both the dataset for Ralls County
(table 1) and the dataset for the other counties (table 2), over‐
all accuracy levels were good, at 83.1% and 82.9%, respec‐
tively. These similar accuracy levels indicated that
ground‐truth data from the limited area of a single county
could provide sufficient information to allow good classifica‐
tion over the entire basin. Accuracy levels were generally
good, but varied for different crops, ranging from 75% to
90% for corn, 81% to 85% for soybean, and 78% to 80% for
grass. Accuracy levels for wheat were more variable, ranging
from 57% to 92%. The relatively smaller number of wheat
fields evaluated in each dataset (tables 1 and 2) gave rise to
more variability in the error statistics for wheat. As noted ear‐
lier, it was not possible to identify clusters that were primarily
grain sorghum using Method 1.

METHOD 2: CLASS IDENTIFICATION FROM

MODIS‐DERIVED NDVI TRENDS
The cluster tree based on NDVI trends showing maximum

distance between clusters is shown in figure 5. Considering
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Figure 3. ISODATA‐classified image of study area.

Table 1. Accuracy statistics for Ralls County
crop type classification using Method 1.

Soybean Corn
Grass
(CRP) Wheat

Classified
Total

User's
Accuracy

Soybean 46 7 1 0 54 85.2%
Corn 3 27 0 0 30 90.0%

Grass (CRP) 3 2 43 1 49 87.8%
Wheat 4 0 5 12 21 57.1%

Reference
total

56 36 49 13 154

Producer's
accuracy

82.1% 75.0% 87.8% 92.3% 83.1%

Table 2. Accuracy statistics for crop type classification in Shelby,
Macon, Monroe, and Randolph Counties using Method 1.

Soybean Corn
Grass
(CRP) Wheat

Classified
Total

User's
Accuracy

Soybean 392 41 22 9 464 84.5%
Corn 39 247 1 6 293 84.3%

Grass (CRP) 35 21 246 14 316 77.8%
Wheat 17 7 4 165 193 85.5%

Reference
total

483 316 273 194 1266

Producer's
accuracy

81.2% 78.2% 90.1% 85.1% 82.9%

Figure 4. Crop type map obtained by Method 1. White areas denote non‐cropped land use.

the hierarchical structure of the cluster tree, classes in each
smallest cluster (at the lowest level of the tree) were
compared on the basis of their NDVI trends. If the same
trends were seen in all cluster members, then that cluster was
identified to the appropriate crop type using the FSA ground‐

truth data. This process was repeated at successively higher
levels of the tree until the level where cluster members were
dissimilar in terms of NDVI trend. This resulted in several
broadly defined clusters corresponding to the crop types of
interest. The clusters having the same NDVI trend were iden-
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Figure 5. Cluster tree identifying crop types.
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Figure 6. NDVI trends (mean ±1 standard deviation) for four identified crop types.

tified and grouped into the same crop, as well as an “other”
category that represented non‐cropped area (fig. 6). As with
Method 1, it was not possible to identify a categorization for
grain sorghum. Again, grain sorghum pixels were contained
in classes where a majority of the class members were other
crops, primarily soybean.

The crop for each class was re‐identified using crop infor‐
mation in the FSA data, and NDVI trend graphs were grouped
by crop type (fig. 6). Examination of these graphs revealed
differences among crops. Soybean had a slightly longer peri‐
od of peak NDVI (from approximately day of year [DOY]
190 to DOY 260) than corn. A secondary peak near DOY 130
may have been caused by emergence of weeds that were then
removed by herbicide or tillage around the time of planting.
Corn had a narrower and earlier peak in NDVI than soybean,
along with a steep increase and decrease before and after the
peak. NDVI remained high from DOY 130 to DOY 270 for
grass, a longer period of peak NDVI than other crop types.
Wheat had two main NDVI peaks near DOY 139 and DOY
210 with a short decrease in NDVI between them. The first
peak represented the wheat NDVI before harvest, which oc‐
curred around DOY 180 in the study area, and the other peak
was caused by other land cover, either double‐cropped soy‐
bean or grass and weeds that appeared after the harvest of the

wheat. A similar bimodal distribution in winter wheat NDVI
was reported by Wardlow et al. (2007), who analyzed 2001
MODIS VI data from across the state of Kansas.

The crop information from cluster tree analysis was ap‐
plied to the 150 Landsat‐derived classes (fig. 3) to obtain the
Method 2 crop type map (fig. 7). As with Method 1, four
crops were mapped: soybean, corn, grass including CRP, and
wheat. For accuracy assessment of Method 2, 132 and 1277
points were randomly extracted from the crop fields of Ralls
County and the other four counties, respectively. Overall ac‐
curacy by Method 2 was 86.0%, better than the manual classi‐
fication (Method 1) value of 83.0%. The kappa coefficient for
Method 2 was 0.81, again better than the 0.76 calculated for
Method 1. In the Method 2 error matrices for both Ralls
County (table 3) and for the other four counties (table 4),
overall accuracy levels were higher than for Method 1, at
88.6% and 85.7%, respectively. In most cases, accuracy lev‐
els for individual crops were also better for Method 2 than for
Method 1.

CROP AREA ESTIMATION

Crop area statistics from Method 1 and Method 2 were
compared to NASS data (USDA‐NASS, 2003) for nine coun‐
ties within or partially within the Salt River basin. Linear re-
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Figure 7. Crop type map obtained by Method 2. White areas denote non‐cropped land use.

Table 3. Accuracy statistics for Ralls County
crop type classification using Method 2.

Soybean Corn
Grass
(CRP) Wheat

Classified
Total

User's
Accuracy

Soybean 54 7 0 0 61 88.5%
Corn 0 29 0 0 29 100.0%

Grass (CRP) 0 1 26 5 32 81.3%
Wheat 1 1 0 8 10 80.0%

Reference
total

55 38 26 13 132

Producer's
accuracy

98.2% 76.3% 100.0% 61.5% 88.6%

gression fits between Method 1 data and NASS data were
very good, with r2 values of over 0.9 for both corn and soy‐
bean and estimates very close to the 1:1 line (fig. 8). Corn and
soybean area estimates by Method 2 were slightly worse,
with r2 values of 0.85 or better. Method 2 tended to overesti‐
mate soybean area by up to 20% and to underestimate corn
area by a similar amount. This may be explained by the fact
that, in the Method 2 accuracy assessment described above,
errors of omission were more prevalent for corn while errors
of commission were more prevalent for soybean (tables 3 and
4). In contrast, the two types of error occurred more evenly
for Method 1 (tables 1 and 2). Area estimates for wheat were
very good by Method 2, but not as good by Method 1. Corre‐
spondingly, user's accuracy was higher for wheat with Meth‐
od 2 (tables 3 and 4) than with Method 1 (tables 1 and 2). The
relatively small number of wheat fields in the training sample
likely made the manual identification operation difficult in
Method 1, while the NDVI‐trend method may have been bet‐
ter able to represent the range of conditions seen in wheat
fields, thus providing a more accurate classification. Further
study would be required to ascertain if Method 2 would con-

Table 4. Accuracy statistics for crop type classification in Shelby,
Macon, Monroe, and Randolph Counties using Method 2.

Soybean Corn
Grass
(CRP) Wheat

Classified
Total

User's
Accuracy

Soybean 411 55 3 6 475 86.5%
Corn 18 255 5 3 281 90.7%

Grass (CRP) 24 17 258 24 323 79.9%
Wheat 23 4 0 171 198 86.4%

Reference
total

476 331 266 204 1277

Producer's
accuracy

86.3% 77.0% 97.0% 83.8% 85.7%

sistently perform better for small training samples. Because
NASS data only report grasslands that are harvested as hay,
the remote‐sensing derived grass areas were much higher
than those from NASS. However, there was still a strong lin‐
ear relationship between the two measurements.

Comparing the two methods, the MODIS NDVI‐derived
crop type map (Method 2) had higher accuracy than the
manually identified crop type map (Method 1). Differences
between the methods were especially apparent for wheat,
which had relatively fewer fields in the training sample. This
may be an indication that Method 2 can provide better results
with less training data; however, this would need to be veri‐
fied with additional datasets. The overall process using Meth‐
od 2 was also more efficient, allowing classification of crop
types with limited ground‐truth data. Method 1 required more
reference ground‐truth data and approximately twice as
much manual interaction with the data than Method 2, and
therefore was more time‐consuming in categorizing crop
types. In addition, because of the additional manual pro‐
cesses and subjective determinations involved in Method 1,
Method 2 was expected to provide more repeatable results.
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Figure 8. Comparison of county‐level crop area from remote sensing estimates to those reported by USDA‐NASS for nine counties within the Salt River
basin.

SUMMARY AND CONCLUSIONS
The procedures developed in this study enabled the use of

MODIS NDVI images as auxiliary data for Landsat‐based
differentiation of crop types. The seasonal trend information
provided by the MODIS images improved the overall accura‐
cy of the crop type map to 86%, compared with an 83% accu‐
racy for the crop type map derived from a more conventional
manual classification method using the ISODATA algorithm
that did not incorporate MODIS seasonal trend data. This bet‐
ter accuracy, coupled with higher efficiency and better re‐
peatability  in the classification process, leads us to
recommend the MODIS‐assisted method for crop type deter‐
mination.

Accuracy levels were similar for the dataset from Ralls
County (location of ground‐truth) and that from the other four
sampled counties, indicating that both classification proce‐
dures could be used across the entire 6,520 km2 basin even
though ground‐truth data were obtained in a smaller area.
This is an important finding, as ground‐truth data are often
difficult to obtain over wide areas. There would likely be a
limit to the geographic range of applicability of such ground‐
truthing, because important factors such as soils, climate, and
cropping patterns generally become more divergent with dis‐
tance. However, we did not reach that distance in this study,
where the maximum distance between sampled ground‐truth
locations was approximately 100 km.

Corn was well discriminated from the other crops, with a
user's accuracy of 84% or better for Method 1 and 90% or bet‐
ter for Method 2. This is important because the fertilizer (ni‐
trogen) and herbicide (atrazine) mainly used in corn
production are two major interests in watershed modeling ef‐

forts, and this level of discrimination should allow accurate
estimation of corn fertilizer and herbicide inputs.

A problem with both methods was their inability to differ‐
entiate grain sorghum from other crop classes, with most
grain sorghum fields being incorrectly classified as soybean.
This may have been because the area with ground‐truth data
had relatively few grain sorghum fields, and because the tem‐
poral growth pattern and NDVI signature of grain sorghum
are similar to soybean. Correctly differentiating between
soybean and grain sorghum is highly desirable because very
different crop chemicals are used with the two crops. Future
work should address this issue, perhaps using ground‐truth
data from an area where grain sorghum is a more predominant
crop.
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